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PREFACE

The research reported here was for the Air Foroe Logistics Manage-
ment Center at Gunter AFS, AL. Of primary interest is the distribution
of demand during lead tine for econoic order quantity (EOQ) type items.
Not only does this research support an inplementation plan for the new
DOD Instruction 4140.45 but it contributes to the basic understanding of
demand processes for EOQ items.
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SUMMRY

One of the important uses of an EOQ item's distribution of lead time
demand is to set its reorder point (when to order new stock). The

current Air Force system computes the reorder point by assuming that

demand during lead time is normally distributed. The analysis presented

here shows that a much more realistic model of observed demand patterns

can be chosen from the cmpound Poisson family of distributions. The

geometric-Poisson and constant-Poisson members of that family are used

in this study. Also we allow for fixed and variable lead times. The

ultimate objective throughout the study is to understand, as exactly

as possible, the true underlying random processes involved in the EOQ
supply system. A strong secondary objective, though, is to allow for a
probability model that could be implemented in the environment of a

large base supply account.

Data from eight federal stock groups and four bases (three CONUS and

one overseas) are analyzed. Approximately 10,000 items are involved.
We analyze individual customer arrival and demand processes as well as

empirical lead time data. The primary emphasis is on fitting the

assumed gecmetric-Poisson and constant-Poisson models to the data. The

geometric-Poisson model is taken to be a better representation of the

actual arrival and demand processes than the constant-Poisson model.

Although the latter model is a cruder approximation it does represent

an easier model for possible inplementation. Both models are shown to

be more representative of the actual data than is the normal distribution
assumption. Also we show that both models perform better in setting

hypothetical reorder points than the current model.

Only a cursory examination of the effect of variable lead time is

attempted since the data contain many outliers. The data are sufficient,

though, for testing the sensitivity of the reorder point computation to
variable lead time. Our analyses show the effect to be almost neglible

for CX)NUS base - ODNUS resupplier ombinations. The effect for overseas

base-CONUS resupplier ombinations probably is significant.

FORTRAN program are available for all of the analyses described.
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SECTION 1
INTROJDUCTION AND BACKGROUND

Several probability mod~els exist to describe the total units

demianded for an econanic order quantity (FflQ) type inventory item during

stock replenishment (lead time). In this report both demand and lead

time are assumed to be random variables and we enuirically study their

probability distributions. Data from several typical Air Force base

supply accounts are used.

The research reported here is in support of an imnplemrentation plan

for DO)D Instruction 4140.45 [4]. This instruction pertains to a

standard stockage policy for consumnable secondary items at the so-called

retail level of inventory. An integral part of the IX)DI is the specifi-

cation of a probability mo~del for the distribution of an item's lead

time demand.

The distribution of lead time~ demand can be used in an important

application in inventory imodels. This application is in the formation

of an item's total variable cost per year which involves the ordering,

holding and backorder costs (Appendix A gives the details). The

decision variables in this formulation are the reorder point (when to

order) and the reorder quantity (how much to order). An exact solution

for the decision variables involves complex nonlinear equations. An

apnroximate solution involves separating the total variable cost in suchP

a way that the reorder quantity is given by the well kncwn Wilson FX)Q

formula and the reorder point is the mean demand during lead time plus

some number of standard deviations of lead time demand. The quantity

added to the mean lead time demand is commonly referred to as a safety

level. Equations A-13 and A-16 in the appendix give the approximate

reorder quantity and reorder point, respectively.

The Air Force currently uses the above approximation method. In

calculating the reorder point for base supply accounts in the CONUS the

safety level is taken to be one standard deviation of lead tiffe demand,

where lead time demand is assumed to be normally distributed. This



calculation implies a 0.84 probability of satisfying all demand during

lead time. In estimating the standard deviation, the Air Force

further assumes that the variane-to-mean ratio of lead time demand is

three for every item. We show later that the normal distribution does

not provide a reasonable fit to the lead time demand nor is a variance-

to-mean ratio of three realistic. A more appropriate manner of

computing the reorder point is the subject of this research.

Our primary objective is to adequately describe the empirical

probability distribution of lead time demand. A reasonable model of

lead time demand can be used to determine a reorder point directly from

an equation similar to A-15 in Appendix A (the quantity L, lead time, in

that equation is assumed to be fixed; we want to allow variable lead

times as well). A strong secondary objective is to determine a "[
reasonable probability model that is implenentable in the environment

of a typical large base supply account.

The remainder of this paper is organized as follows: Section 2

describes the assumed probability models, Section 3 shows the available

data, Section 4 gives empirical evidence to support the probability

models, Section 5 discusses the effects of variable lead time, and

Section 6 contains our recommendations for validation/implementation.
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Our objective is to identify probability models which adequately

describe customer arrival and demand patterns like those in Figure 1.

Three probability models of lead time demand are presented in this

section--the first two deal with constant lead time and the third

deals with stochastic lead time.

Model I, Geometric-Poisson

Suppose that during a constant lead time of length C, there are

N () customrs who request a certain item. If the demands per customer

are represented by U, i = 1,2,..., N(e), then the demand during time t

is

D() = U1 + U2  ... + UN() ()

In (1), N(t) and the Ui's are random variables; thus, by construction

D(e) is also a randon variable.

Figure 2 gives a graphical display of this process. Shown in the

figure are demands by four customers (N(Z) = 4); they request two, one,

one and three units, respectively (U1=2, U2=l, U3=l, U4=3). The lead

time demand is D(Z) = 7. This process matches the kinds of arrival

and demand patterns that were shown in Figure 1.

Units

demanded 0
0

0
Customer 1

Figure 2. Example of Lead Tine Demand Process

For a particular item we assume that the U. 's are independent and1

identically distributed. We choose the probability distribution of U

(we drop the subscript) to be the geometric distribution. As for the

distribution of the number of customers who demand the item in e units,

N(C), we assume the Poisson distribution. Numerous articles in the

inventory literature assume these models [2,6,16,17,18,19]. However, no

4



data to support these models are given in any of the references. A

later section of this report shows how these models fit actual Air Force

inventory data. Table 1 shows the form of the geometric and Poisson

probability distributions and their means and variances.

Table 1. Probability Distributions

Name Probability Distribution Mean Variance

Geometric Pr(U=u) = (1-p)p u - l, l/(l-p) p/(1-p) 2

u-1,2 2....

Poisson Pr(N=n) = (WZ) n e -A/n!, Al At
n=O, 1,2,...

Geometric- P = e -Z A//(l-p) Xl(l+p)/(l-p) 2

Poisson o
- (l-p)A t j 3 x j ,/

Px x j=l

where P = Pr(D=x)x

Constant- P = (Al)X/Ce-Xl/(x/c)!, cAt c 2A
Poisson Xx=, c, 2c,...

where P = Pr(D=x)x

With the assumption of Poisson customer arrivals the distribution

of lead time demand in (1) is called a compound Poisson distribution

[181. The geometric assumption for the units demanded per custamer

gives rise to a distribution called gecmetric-Poisson [181. The form

of this distribution and its mean and variance are shown in Table 1.

Table 2 shows a portion of the probabilities for the geometric-Poisson

distribution for several values of the mean (m) and for an arbitrary

variance-to-mean ratio (VMR).

The geometric-Poisson distribution can be used in a straightforward

way to compute a reorder point. Suppose that the mean lead time demand

for an item is five and the variance-to-mean ratio of lead time demand

is known to be 2.5. If we further assume that the probability distri-

bution of lead time demand is the geametric-Poisson distribution, then

the probabilities in Table 2 (with m = 5) are applicable. For example,

5



Table 2. Geametric-Poisson Probabilities
For VMR = 2.5

Probability of x demands

x .50 1.0 2.0 3.0 4.0 5.0 6.0

0 .7515 .5647 .3189 .1801 .1017 .0574 .0324

1 .1227 .1844 .2083 .1764 .1328 .0938 .0635

2 .0626 .109- .1573 .1620 .1437 .1167 .0895

3 .0317 .0630 .1113 .1347 .1365 .1245 .1057

4 .0159 .0356 .0753 .1047 .1191 .1201 .1115

5 .0079 .0198 .0492 .0775 .0978 .1079 .1085

6 .0039 .0109 .0313 .0551 .0765 .0917 .0993

7 .0019 .0059 .0194 .0381 .0577 .0746 .0865

8 .0010 .0032 .0119 .0256 .0421 .0585 .0724

9 .0005 .0017 .0071 .0169 .0300 .0446 .0585

10 .0002 .0009 .0042 .0109 .0209 .0331 .0460

we see that the probability of zero, one, and two demands is .0574,

.0938, and .1167, respectively. We can form the cumulative distribution

of lead time demand by summing the individual probabilities. That is,

the probability of lead time demand being one or less is .1512, two or

less is .2679, etc. Continuing in this way we see that the probability

is .8452 that lead time demand will be eight units or less. If we

desire a reorder point to satisfy 84% of lead time demand, then for

this example the reorder point would be set to eight units. Reorder

points for any other probability levels can be determined in a similar

way.

A few comments about a special case of the geometric-Poisson distri-

bution are appropriate before we leave this model. It is important to

note that if p = 0 in the geanetric distribution, then with probability

one each customer demands exactly one unit. Lead time demand, D(t) in

equation (1), in this case corresponds to N(e). In other words, for

this special case, lead time demand is given by the Poisson distribution.

6



Item 2 in Fiqure 1 has this characteristic; it will be shown later that

many items in a typical supply account also have this property. A

model which is a particular generalization of this special case will be

presented next.

Model II, Constant-Poisson

Another capound Poisson distribution of interest here is one we

call the onnstant-Poisson. During a fixed lead time f, suppose that

demand is given by

N(e) terms

D(f) = c + c + ... + c (2)

where N() customers demand c units each. With the assumption that

N(O) has a Poisson distribution, D(e) is again a canpound Poisson distri-

bution [18]. Table 1 shows the form of the distribution and its mean

and variance.

Although this model is not as realistic for all items as the geometric-

Poisson model, it does describe demand on items like number two and four

in Figure 1. We show later that this model also describes lead time

demand reasonably well on items like nunber one in Figure 1 where the
variance of units per demand is very snall.

Reorder points can be computed exactly as in Model I. That is,

from the cumulative probability distribution a reorder point is chosen

to satisfy a certain proportion of lead time demand.

Models I and II apply to fixed lead times; in the next model we

address stochastic lead time.

Model III, Compound Poisson with Stochastic Lead Time

In this model we allow the lead time for resupply to be a random

variable. If L denotes lead time and N(L) represents the number of

customer arrivals during L, then lead time demand can be written as

D(L) = U1 + U2 + ... +UN(L). (3)

ii m i 1 1 i I II I i i i i i i i , | i , ,17



In (3) the U. 's are assumed to be either geometrically distributed as
in Model I or onstant as in Model II. For a particular value of the

lead time we assume that customer arrivals are Poisson distributed.

With these assumptions we call this model a compound Poisson with

stochastic lead time.

The distribution of lead time demand can be developed in the
following way. Let t be a particular value of the variable lead time L.

In this case we essentially have Model I or II and we can represent the

probability distribution by f(dIC). Now if L is assumed to have a

discrete probability distribution g(e), it follows that the marginal

distribution of lead time demand can be written as

f(d) = Ef(djf)g(t). (4)

The summation is taken over all permissible values of L. (Later it

will be obvious why we assume L is discrete.)

Table 3 shows an example of this process. Suppose lead time L has

the three values 10, 20, and 30 days with probabilities .3, .5, and .2,

respectively. If we arbitrarily use the geametric-Poisson model, then

the onditional distribution of lead time demand, f(df/), results. The

marginal distribution of lead time demand, f (d), is shown in the last

row. For example, f(0) = .333(.3) + .111(.5) + .037(.2) = .163. The

other values of f(d) are similarly obtained. Reorder points for any

desired probability can be determined from f (d) by forming the cumula-

tive distribution function as in Model I.

Table 3. Example of Model III

d and f(dC)

e M 0 1 2 3 4 _:5

10 .3 .333 .333 .196 .089 .033 .016

20 .5 .111 .221 .242 .190 .120 .116

30 .2 .037 .110 .176 .197 .174 .306

f (d) .163 .232 .215 .161 .105 .124

8



A closed form representation for f (d) with the often assumed gamma

distribution of lead time has proved elusive. We suspect that the

probability distribution of lead time demand is intractable for the

geomtric-Poisson and ganmia assumpticn. This is not a serious problem,

however, since the oc utation for f (d), as illustrated in Table 3, can

be performed easily on a cxxputer.

Despite the above mentioned omplexity of the probability distribu-

tion of D(L) in (3), its mean and variance are easy to derive.

McFadden [121 shows the mean and variance to be

E(D(L)) = E(U)E('4)E(L) (5)

and
V(D(L)) = E(L)2[EN)V(U)+V(N)E2(U)I + V(L)E2(U)E 2 (N) .  (6)

In (5) and (6), E(.) is expectation or mean and V(-) is variance.

Besides lead time L, the other randm variables are U (units per demand)

and N (number of custamer arrivals per unit time).

Now that several lead time demand models have been described, our

next task is to fit them to data; the next section describes those data.

9



SECTION 3

DATA

For studies of this nature and others concerning retail inventory

theory and practice, several Air Force bases are providing demand and

lead time data to the Air Force Logistics Managment Center (AFIYC).

The data we report are from four of these bases. Table 4 shows the

bases and federal stock groups that comprise our data set. The descrip--

tion of a stock group is not all encomnpassing, but is meant to be

representative of the items in that group. The eight stock groups were

chosen saimwhat arbitrarily to represent a broad spectrum of typical

items. The amount of usable data varies from 6 to 12 mnths across the

individual stock accounts with the time frame being 1977-19 78. All DOQ

item with at least one demand during the data collection period are

considered.

Table 4. Data
Number

Base Federal Stock Group (FSG) of Items

Bentwlaters 16 - Aircraft Landing Gear 397
59 - Electronics 2,526

Dover 15 - Aircraft Structures 712
59 - Electronics 2,318
66 - Flight Instruments 373

Minot 29 - Engine Miscellaneous 348
31 - Bearings 245

Randolph 53 - Screws, Nuts, Bolts 2,877

Total 9,796

For each item there are three data records: an item record, an

order and shipping time or lead time record, and a demand record. The

item record contains an item' s federal stock number, unit cost, routing

identifier and demand value (demand value is the product of an item's

unit cost and total demands for the data collection period; it thus

represents a gross measure of an item's supply importance).

10



The next information given is a lead time record. It contains, for

each stock replenishment request, the requisition date, receipt date,

order and shipping time, and issue priority code. The demand record is

similar to Figure 1 where for each custcmer demand, the arrival date and

units per demand are given. Only recurring demands are considered.

Before showing any data related to the probability models of

Section 2, we describe same pertinent characteristics of the data.

These characteristics will be helpful in later discussions on probability/

model fitting and validation/implementation. First we describe an

inspection of the raw data that was performed to determine if the data

are adequate for analysis purposes. Also, we present same descriptive

statistics related to item demand patterns, demand value, and lead time

experience data.

Raw Data Inspection

Few data sets are canplete or free from errors of various kinds and

the data we have to work with are no exception. A necessary first task

that precedes any data analysis or probability model fitting is to

examine the data for inconsistencies and/or missing data. In Figure 3

we show a calendar time plot of the number of custcmer arrivals per

month for all items in the Bentwaters 59 and Randolph 51 supply

accounts (the latter data set will not be used again in this report;

however, it is a good example to emphasize the importance for "looking"

at the raw data in detail).

In the Bentwaters 59 data an inordinately large number of custamers

made demands on the system for the period 7262 (day 262 of 1977) to

7289. This period happens to cover the start of the fiscal year (FY)

for 1978. Although unsubstantiated, we suspect that fund constraints

at the end of FY 1977 caused potential custamers to delay their

requests until after the start of the new fiscal year when more funds

were available. The dcmnward trend just before the referenced period

also supports this hypothesis. This kind of supply performance repre-

sents a nonrandom characteristic that we do not attempt to ndel. For

11



Bentwaters 59
4

400 --

04 r- m('4W O

H I ( '4 '

N- N m 0 ND

800- Randolph 51

0 400-

N m ' ND C 4 - 1
-NO

Figure 3. Calendar Plots of Customer Arrivals per Month
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later analyses we delete this period of data (7262-7289) for the

Bentwaters accounts.

With reference to the Randolph 51 data, several occurrences seem

peculiar--one concerns the large jump in customer arrivals during the

period 8078-8106, the others concern the drop for the period 8134-8162

and the total lack of data for the period 8216-8246. The problems with

this account make it virtually useless for our purposes. We have no

reasonable explanation of what may have caused these phenomena.

Figure 4 shows the data periods that we analyze in this study.

omissions of data are for reasons given above (these periods are labeled

"omit" in the figure). For reasons that will become obvious in the next

section, we choose six months of data for CONUS bases and approximately

nine months of data for the single overseas base (these periods are called

observation periods in the figure; the holdout periods will be used for

prediction in the next section). Next we look at units demanded per

customer to determine if any inconsistencies exist in those data.

Bent 16,59 i - Periods:

Dov 15,59,66 I I I-i Observation
I O m I ~ it

Min 29,31 1 i Omit

R xi53II I t --- HoldoutR n 53 I-Lr

I r I I [
I, I I I ,

7121 7177 7233 7289 734 5 8036 8092 81 48

Date

Figure 4. Data Periods for Analyses

Demand patterns like those in Figure 1 would be desirable for

every item. Unfortunately, a few items have what appear to be outliers

intermixed with their demand histories. For instance, one item from

the Bentwaters account had units demanded per customer of 1, 2, 2, 74,

and 6. The largest demand turns out to have been associated with a

one time modification and should not have been included as a recurring

13



or random demand. Other items have similar data that are of a

suspicious nature--perhaps because of a planned modification or maybe

just erroneous reporting. We estimate that only 5% or so of the item

have characteristics of this sort.

It is ixportant to emphasize again that these kinds of anomalous

data can contaminate a data analysis. In research such as this and

certainly in an operational setting where a probability model or any

estimation device is used, provisions should be included to identify

nonrandom data. We do not suggest that these unusual data should be

ignored; to the contrary, managers of the system should investigate

these occurrences in detail and attempt to preclude their happening in

the future.

Item Statistics Versus Unit Cost

The demand histories that were shown in Figure 1 were for items

that cost over $5.00. Figure 5 shows the same kind of data for a sample

of items that cost $5.00 or less. Clearly, these two figures suggest

it is characteristic of EOQ accounts that cheaper items, for the most

part, have different demand patterns than more expensive ones.

Item #1 Item #2 Item #3 Item #4

Date Units Date Units Date Units Date Units

77-123 50 77-140 4 77-175 2 77-122 12
77-144 63 77-143 6 77-178 2 77-122 5
77-151 63 77-159 6 77-265 2 77-143 14
77-159 63 77-167 1 77-265 2 77-171 5
77-193 63 77-200 1 77-192 5
77-207 63 77-272 6 77-271 5
77-237 75 77-326 4 77-277 14
77-242 63 77-361 4 78-012 15
77-265 35 78-012 4 78-044 5
77-326 63 78-086 4 78-052 15
78-003 63 78-088 4 78-072 15
78-012 63
78-031 63
78-038 43

Figure 5. Typical Demand Histories (Unit Cost < $5.00)
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To investigate this further, Table 5 gives some statistics on

customer arrival rates and units demanded per customer for the two

strata of unit cost (UC). We see that the average number of custamer

arrivals per week is only slightly larger for the lower cost items.

However, the dramatic difference relates to the average and variance of

units demanded per customer for the two groups. The average for all

items shows that lower cost items have an average units demanded per

customer approximately six times as great as that for items which cost

over $5.00. In addition, the variance of an item's units demanded per

customer is approximately 280 times as great (cxxparing low cost to

high cost). Not surprisingly, FSG 53 (screws, nuts, bolts) is more

badly behaved than the other stock groups, at least when measured in

terms of variance of units demanded per customer.

Table 5. Statistics on Customer Demands Versus Unit Cost

Average No. Average Variance

Customers/Week Units/ Cus ter Units/Customer

UC-< UC> UC-< UC> UC-<  UC>

Base FSG $5.00 $5.00 $5.00 $5.00 $5.00 $5.00

Bentwaters 16 .16 .13 6.0 2.3 26.1 7.7
59 .12 .09 4.9 2.0 210.2 3.5

Dover 15 .13 .11 4.7 1.5 12.4 .7
59 .11 .08 8.0 1.9 1122.2 2.4
66 .09 .09 7.1 1.7 601.2 1.3

Minot 29 .13 .09 16.6 2.2 1275.3 .7
31 .08 .08 5.3 2.7 11.4 1.3

Randolph 53 .18 .10 21.2 3.0 1459.7 8.4

Average for .14 .10 13.0 2.1 949.6 3.4
All Items

Another way to analyze an item's demand pattern is to study the

variance-to-mean ratio of its total demands over some period of time,

say one week. Figure 6 shows a relative frequency chart for the VI of

total demands/week for items from the Dover 59 account. Here the

median (50th percentile) is 1.4 and the 95th percentile is 6.6. It is

15
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Figure 6. Relative Frequencies of VMR for
Dover 59 (UC > $5.00)

interesting to note that on 82.3% of the items the VMR is less than

three, which is the value that the Air Force uses in computing the

safety level part of a reorder point. We have not been able to find a

report that shows the rationale for this choice of three; for these

data any constant value of the VMR applied to every item seems in-

appropriate. The large variation in the VMR across items suggests

each item's particular VMR would be a better value to use. (We do not

mean to infer that the VMR of demand over a variable lead time is the

sam as the VMR over a fixed period of time. Indeed, equations (5) and

(6) can be used to show how the VMR of lead time demand varies with the

mean and variance of the lead time process. It does seem reasonable,

though, that the VMR of lead time demand would also be extremely

variable--as is true here for the VMR of demand for one week. The VMR

of lead time demand will be discussed in Section 5).

Table 6 gives the VMR of total demands/week for each of the supply

accounts in terms of the two categories of unit cost. Shown for each

account are the median and 95th percentile of the VMR. These statistics

are based on 7696 items with at least one customer arrival during the

respective observation periods shown in Figure 4 (4856 items for UC -

$5.00 and 2840 items for UC -" $5.00). As was true for the data con-

cerning units demanded per customer, we see a large difference in the

VMR of total demands/week versus unit cost.

16
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Table 7. Average Demand Value Per Item Versus Unit Cost

UC < $5.00 UiC > $5.00

Number Number
Base FSG of Items DV/Item of Items DV/Item
Bentwaters 16 101 189.38 296 531.93

59 1562 37.10 964 419.99

Dover 15 68 87.48 644 947.06
59 1368 49.08 950 576.46
66 104 25.18 269 841.06

Minot 29 157 113.22 191 479.23
31 163 41.80 82 158.65

Randolph 53 2508 68.85 369 288.82

All Items 6031 $58.04 3765 $572.97

items can involve very large deficits or excesses in projected supply

expenditures. Comparatively speaking, any possible errors of misrepre-

sentation would be much less serious for the lower priced items. Given

the turbulence associated with demand for the lower priced items and

the extremely lower supply investment, a heuristic approach for demand

prediction is unavoidable but certainly not too serious a cxnmpronise.

A reasonable strategy to xirpensate for the heuristic model where

predictions might vary considerably from actual demand would be to

simply overstock the target lead time supply effectiveness. For example,

set stock levels for a 0.88 or 0.90 probability rather than 0.84.

Certainly, the supply investment would not significantly increase

because of the low unit cost of these items. Further ocmints about

this heuristic approach will be given in the next section.

Lead Time Experience Data

Next we turn to an analysis of empirical lead times. Figure 7 shows

a typical lead time record for one item. Shown are the issue priority,

the requisition date, receipt date, and order and shipping time (OST).

Some apparent anomalies exist in the data. For example, is the second

order a partial shipmnt of the first since they were ordered on the

18



Issue Requisition Receipt Order and
Priority Date Date Shipping Time

12 77-123 77-213 90
12 77-123 77-178 55
02 77-152 77-165 13
06 77-153 77-165 12
12 77-159 77-168 9
06 77-173 77-180 7
12 77-173 77-180 7
12 77-178 77-189 11
12 77-178 77-189 11
12 77-179 77-186 7

Figure 7. Typical Lead Time Record

same date but the second came in earlier? Are the two orders placed on

day 178 of 1977 duplicate entries? (We assume in what follows that they

are--consequently, one of the orders is deleted.)

To get a sufficiently large data set for a statistical analysis, we

group all items in one FSG at one base and form a relative frequency

diagram of the order and shipping times. Figure 8 shows the results

grouped by routing identifier; the data set is the Bentwaters 16

account. Frequency diagrams are given for issue priorities 9-15

(referred to as priority group 3) and issue priorities 1-8 (priority

groups 1 and 2). The diagrams for priority group 3 are very ragged

and suggest a mixture of delivery modes. That is, in the Bentwaters-FGZ

data for priority group 3 many orders arrive in 10-20 days, yet the

mean OST is between 40 and 50 days. We suspect that occasionally

priority group 3 items are mixed in and shipped with priority group 1

or 2 items. Both sets of OST data in Figure 8 for priority groups 1

and 2 agree fairly well with our expectation of a lead time distribution--

unimodal and skewed to the right.

It is often postulated that the gamma distribution is an applicable

probability model for lead time distributions [7]. Our attempts to fit

the gamma distribution to the data in Figure 8 and others have been

unsuccessful. Indeed, we have been unable to fit the normal, lognormal

or Weibull distribution to any empirical OST distribution considered in
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this study. Part of this problem may be due to the fact that we have

grouped OSrs for a multitude of items from one base-resupplier combina-

tion as if they were from a ccmorn distribution. This may not be

realistic. Not enough data are available on an individual item to

study the OST distribution directly--hence, we have to resort to a

consolidation. Operationally, a forecast of each indiviaal item's

OST seem impractical anyway.

As a result of the suspected anomalies cited in relation to

Figures 7 and 8, a separate study has been initiated at the AFU4 to

determine the mechanics of the lead time process. For our research,

the procedure outlined in Section 2 for stochastic lead times will be

used, that is, we determine the lead time demand by using the empirical

lead time distribution. Since one of our primary objectives is to

determine the sensitivity of the reorder point calculation to the
variance of lead time, we think the available empirical lead time data,
even with possible errors, is adequate for this purpose. The effect of

variable lead time will be discussed in detail in Section 5.

The next section deals with fitting Models I and II to actual

demand data.
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SECTION 4

FIT OF PROJBABILITIY MODELS TOD DATA

In this section we demnstrate how probability Models I and II of

Section 2 for fixed lead time demand fit actual data. We also show~

how forecasts based on the mod~els compare with actk. 1 demands in a

fictitious lead time period. The data sets described in the last

section provide an excellent opportunity to investigate the assumrptions

that are commonly used in inventory studies to model empirical data.

Due to the paucity of data that existed in the past, these assumiptions

have seldomD been subjected to real occurrences.

Several comments about probability modeling are in order before we

show any results. First, before any modeling is attempted, the data

should be examined for obvious anomalies and/or missing events--the last

section addressed this issue. Sece-nd, it is not necessary that a

probability model fit the data exactly to be useful; what we seek, at

a very minimumx, is a model that provides a reasonable fit to the data.

In other words, the fitted mrodel may help us understand a complex set

of data without yielding a perfect fit to them. "Noise" in the data

and/or the desire for a parsimonious model often lead us to accept a

reasonable model rather than pursue a mrore accurate one. Third, a

successful fit of a probability model does not necessarily imply that a

unique set of circumistances produced the data. For example, the

negative binanial probability model can be generated by 15 different

stochastic processes [1]. Without other information, we could not say

which process generated a set of data that may have been fitted with

that distribution. Another example concerns the Poisson distribution.

Events with low frequency in a large population can often be fitted by

a Poisson distribution even when the probability of an event varies

scimewhat in the population (contrary to the classic Poisson postulates).

Referring to the small number of events this cmpirical phenome~na is

somietimes called the law of small numbers [10]. The point to be made

is that for purposes of predictinq future events, such as lead tiine
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demand, all that is necessary is that the model should fit the data--

we do not necessarily have to accept any particular set of assumptions

about the model to predict future occurrences reasonably well. With

these preliminaries we next attempt to fit the models described in

equations (1) and (2).

Our main objective is to model or characterize custaner habits of

arrivals and units demanded, and then to use that characterization to

predict lead time demand. Referring to Figure 2 it is obvious that an

item's total demand for a specified period of time can be modeled as

some capound process. That is, a randan number of customer arrivals

occur during the period [0,e] and each cuzt-ner denands a random number

of units. As in equation (1), if we assume the former has a Poisson

distribution and the latter a geometric distribution, then the total

demands in [0,Z] has the geometric-Poisson distribution. Next we show

how these two models (Poisson and geometric) fit actual arrival and

units demanded data. All goodness-of-fit tests will be performed using

a 0.95 confidence coefficient.

Fit of Poisson Distribution to Data

First we empirically study the distribution of the randan

variable N(Z) in equation (1). If we have a forecasted lead time, of

say f = seven days, we are interested in how the distribution of the

number of customers for a seven-day period, N(7), agrees with the

Poisson assumption. To get empirical evidence for N(7) we divide a

time period int) nonoverlapping intervals of length seven days; we then

count the nunber of custamer arrivals in each interval. To assess the

appropriateness of the Poisson distribution we next compare the obser-

vations to the expectations which result fram the Poisson assumption.

For item 1 in Figure 1, which is from the Bentwaters account, we

form 37 seven-day intervals covering the observation period shown in

Figure 4. The observations (expectations) for N(7) = 0, 1, 2 are

30(29.8), 6(6.4) and 1(0.7), respectively. Using the Poisson dispersion

test as our goodness-of-fit test [9,14], we can conclude that the Poisson
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expectations provide a very nice fit to the observations (at 0.95).

Item 1 in Figure 5 is also a Bentwaters item; its observations

(expectations) for N(7) = 0,1,2 are 24(26.0), 13(9.1) and 0(l.6).

Again, the fit is good. Table 8 sunmarizes the fit of the Poisson

distribution to all of the data we study. The colunn labeled N=0 gives

the number of items that had no custcoer arrivals for the respective

observation periods; the next column, N2I, shows the number of items

that had one or more custamer arrivals. The entry % Poisson, shows

the percentage of the N-I items that can be fitted reasonably well with

the Poisson distribution. (The N=0 items are excluded since an estimate

for X is not obvious when there are no custamer arrivals.) We conclude

that the Poisson distribution provides a reasonable fit to almost all

item's weekly arrival patterns. In addition, the quality of the fit

appears to be independent of unit cost. Becau- F the reproductive

property of the Poisson distribution [13] we expect it to provide a

reasonable fit for any value of Z, not just the seven day value used

here.

Table 8. Fit of Poisson Distribution

UC < $5.00 UC > $5.00

Base FSG N=0 N> % Poisson N=0 N>I % Poisson

Bentwaters 16 12 84 89.3 30 265 92.5
59 164 1368 90.6 11 852 93.2

Dover 15 22 46 100.0 191 453 94.7
59 492 848 95.0 334 616 95.6
66 29 74 95.9 95 174 92.0

Minot 29 35 117 93.2 56 135 90.4
31 46 116 94.8 25 57 96.5

Randolph 53 304 1903 95.6 68 293 94.2

All Items 1104 4556 93.8 910 2845 93.9

Fit of Gemtric Distribution to Data

The next random variable of interest is the units demanded per

custcmer, Ui in equation (1). Our analysis will necessarily be mostly
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subjective due to the small number of custcwer demands that typically

occur in an observation period. For example, item 1 in Figure 1 only

has eight custmer demands in the period shown. In Table 5 the average

number of customer demands per item in a week is about 0.12 and so the

average number of demands in an observation period of say, 37 weeks,

would be approximately five. This small number of custctwr demands is

insufficient for an objective goodness-of-fit test of the geanetric

assumption. For example, the observations (expectations) on item 1 in

Figure 1 for U = 1,2 are 7(7.1) and 1(0.8), respectively. The fit
2

certainly looks reasonable but we are unable to perform a X goodness-

of-fit test because there are too few cells for comparison. (A minimnu

of three cells with expectations greater than one would be required to

test the gecmetric assumption statistically.)

A possible way to get more data on units demanded per customer would

be to increase the observation period to perhaps one or two years. We

avoid this temptation because of reasons related to stationarity of the

units per demand random process. It seems reasonable that longer periods

would invite changes in such things as base missions, flying hour

programs, maintenance and supply policies and monetary constraints--

these changes could inpact on a customr's demand habits. To minimize

the effects of these possibilities we deliberately choose smaller obser-

vation periods. (This argument also applies to the previous material

concerning the random variable N(Z).)

Because of the discussion in Section 3 on the characteristics of an

item's units demanded per custaer versus unit cost, we do not attempt

to study the geometric distribution for the UC !. $5.00 group. We will

consider the low cost items in relation to the constant-Poisson

distribution.

To study how the gecmetric distribution fits the random variable

units demanded per custcmer, we consider just those items that had at

least one customer arrival during the data collection period. Table 9

shows certain statistics on these items. There are 3765 items that cost
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Table 9. Statistics on Units/Customer

% Items with % Items with
Base FSG NI Units/Custcner = 1 Units/Customer = k'l

Bentwaters 16 265 47.5 15.5
59 852 54.2 19.5

Dover 15 453 66.7 7.7
59 616 59.6 11.7
66 174 63.8 10.3

Minot 29 135 59.3 17.8
31 57 38.9 33.3

Randolph 53 293 46.8 21.5

All Items 2845 56.5 15.4

over $5.00; 2845 had at least one customer demand during the respective

observation periods. Of this latter group an average of 56.5% had a

constant demand of one per customer (p = 0 in the geometric distribution)

like item 2 in Figure 1. About 15% of the items had a constant demand

greater than one, like the fourth item in Figure 1. This latter group

can be modeled with the geometric distribution simply by rescaling to a

demand of one per customer with a unit of issue of three, say. For all

of these data, then, the geometric assuonption is tenable on approximately

70% of the items with a demand. The remainder of the items have demand

histories similar to items 1 and 3 in Figure 1. Next we examine demand

data on them.

Since we do not have enough arrival data to study each item's units

demanded per customer statistically, we resort to an aggregate analysis.

Although not as desirable as an individual analysis, the aggregate

approach can suggest a basic underlying model for customer demand.

If each item's units demanded per customer is a random drawing from

a common geometric distribution, we would expect the probability distri-

bution of units/custcmer to be of the form shown in Figure 9. This

particular geometric distribution has a mean of two units per custcmer

which is the approximate mean of our data (see Table 5 for UC>$5.00).
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Figure 9. Typical Geometric Distribution

If units demanded per customer is geometrically distributed for each

item (from a common distribution), then an aggregate plot of the data

should resemble the distribution shown in Figure 9. That is, we look

for i distribution with a mode at one unit that is skewed to the right.

Figure 10 shows the aggregate data for each supply account studied.

(The quantity n is the number of data points.) With the exception of

the Bentwaters 16 account, each plot has the basic form of the gecmetric

distribution--a maximum at one unit and generally decreasing to the

right. Certainly, this analysis is not a proof of the geometric

assumption, but it is highly supportive.

The above analyses of the randcm variables N(t) and U. in equation

(1) suggest that the geometric-Poisson model is at least a reasonable

approximation to the true underlying distribution of D(e) in equation

(1). We showed that the Poisson assumption was a very good representa-

tion for customer arrivals. Although the geometric assumption for the

U. 's was not substantiated in a statistical sense, it was shown to have1

several appealing properties that are consistent with the data: (a) it

does allow for a constant U. (with p = 0) which is a characteristic of1

a large percentage of the items; (b) it can represent a variable demand

(with p > 0); and (c) its probability distribution has the same general

shape as actual demand data. The "acid test" of the geometric-Poisson

model, though, is how well it works in an operational sense; that is,

how well it predicts future demands.
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Operational Test of Geometric-Poisson Model

To study the effectiveness of the geometric-Poisson model in fore-

casting future demands, two adjacent time periods are considered. The

first period is a data collection period and the second is a holdout

period. We let the holdout period correspond to a fictitious lead timne

period. In essence, model parameters (X and p for the gecmetric-Poisson

distribution in Table 1) are estimated from data in the observation or

data collection period, and then "lead time demand" is predicted for

the holdout period. If the predicted demand agrees reasonably well

with the observed demand, then the geometric-Poisson model can be used

to model lead time demand and subsequently set reorder points.

Coputing the reorder points is one of our main goals. Since a

reorder point is supposed to satisfy a certain percentage of lead time

demand, say 84%, the cumulative form of the geometric-Poisson distribu-

tion can be used to determine the appropriate quantity. This process

was explained in Section 2.

The observation and holdout periods for each supply account were

shown in Figure 4. The accounts at Bentwaters have holdout periods of

seven weeks; the other accounts have holdout periods of three weeks.

These values correspond roughly to the average lead time frcm the bases

to their respective principal resuppliers. The observation periods for

the Bentwaters and other supply accounts are 37 weeks and 26 weeks,

respectively. Thus, for Bentwaters we use 37 weeks of observed data to

predict usage in the next 7 weeks; for the CONUS bases we use 26 weeks

of observed data to predict 3 weeks of usage. We would have preferred

a longer observation period for the Bentwaters data (a ratio of 26 to 3

in comparing the observation to the holdout period) but this was not

possible due to missing data and the other reasons cited before.

The next task is to actually predict demand in the holdout or

fictitious lead time period. Since we are primarily interested in the

lead time distribution to set reorder points we make predictions that

should cover 84%, say, of the second period demands. We can compare
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these predictions to observations and then judge the merits of the

geometric-Poisson distribution for this specific purpose.

Before showing sunmary results, some specific cases are given.

Table 10 shows a few examples of how the predictions and observations

ccrupare. We arbitrarily choose five items from the Dover 15 account.

Table 10. Predictions and Observations for the Gecmetric-Poisson

Federal Stock Observed Demands Predicted Demands Observed Demands
Ntirber Period 1 Period 2 (@ .84) Period 2

1560000094144 7 2 1

1560001030911 23 4 4

1560002254290 3 0 0

1560004773610 4 1 2

1560004981175 10 3 1

The predictions are made by taking the man and variance of an item's

weekly demands throughout the observation period, and then estimating

the parameters of the geometric-Poisson. The cumulative distribution

is then formed and a prediction that will satisfy 84% of the forecasted

demand is made. The value of f in the geometric-Poisson is set to

three for this example. Essentially we are saying that if the reorder

point is set to this value, 84% of the demands will be satisfied, on

the average. For --ample, for the first item in the table, if we

reorder when the inventory position reaches two units, we should

satisfy all demands for 84% of the lead time cycles or we say the

probability if 0.84 that we will satisfy all demands for a single lead

time cycle. It is important to note that the 0.84 applies just to a

lead time cycle and not to the effectiveness of the supply system for

all time.

For the first item, the actual number of demands in the holdout
period totaled only one. Our reorder point would have been sufficient,

then, if the lead time had been three weeks. Similarly, item 2 would

have had sufficient stock to satisfy all demands during the second
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been $44,440.25. The 247 items are those items with at least one
custmir arrival during the observation or data collection period. This

number is less than the number shown in Table 8 since we removed those

items with a variance-to-mean ratio, of total units demanded, greater

than seven. For reasons presented before, we believe same items contain

outliers and we select a cutoff on the VMR of seven to exclude those
items. A VMR of seven is the approximate 95th percentile value for

all items with a unit cost over $5.00. Each data set has a number of

items removed for this reason.

For conparison, the performance of the current Air Force system is

also shown in Table 11. In the current system, an item's reorder point

is its mean lead time demand plus a safety stock. The mean lead time

demand is nothing more than the daily demand rate times the forecasted

lead time period (the holdout period here). The safety stock for

CONUS bases is the maximum of 15 days of demand or one standard
deviation of lead time demand; for overseas bases, the safety stock is
the maximum of 30 days of demand or two standard deviations of lead

time demand. In both cases, the reorder point is always truncated to

the next lower integer value. For example, a calculated reorder point

of 3.1 would be truncated to 3.0, and so would 3.9. As mentioned

before, in computing the standard deviation of lead time demand, a VMR

of three is used. For example, if the mean lead time demand is

expected to be five units, then the standard deviation of lead time

demand would be the square root of 15. In Table 11 we see that the

current system for the Bentwaters 16 account satisfies 95.5% of the

holdout period demands and costs $57,341.77. In this case the current

system is a better predictor since its forecast is closer to tie target

lead time supply effectiveness of 95.0%.

Prom the summary line in Table 11 for the two Bentwaters accounts

we see the respective percentages and costs. The observed reorder

point effectiveness for the current system is closer to the target of

95% than is the effectiveness via the georutric-Poisson model. The
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investment in lead time spares in considerably higher, though, for the

current system. The summary 1ine the last three base accounts is

more favorable to the geometric-Poisson model, both in terms of being

closer to the target of 84% and having a smaller investment.

As an overall summary of these results we observe the following:

(a) the geometric-Poisson missed the target by -2.3% for the Bentwaters

accounts and was over by 2.1% for the CONUS accounts--the average error

here is -0.1%; (b) for the current system the average error can be seen

to be +3.4%; (c) the lead time spares investment for the geometric-

Poisson model compared to thie current system is 72.0% for Bentwaters

and 61.7% for the other accounts. Based on these two measures, we

think the geometric-Poisson model is a more reasonable and certainly

more cost effective model than the current system. We showed before

that the current system's assumptions of normally distributed lead time
demand and a constant VMR of three for every item are highly questionable.
The assumptions are very easy to implement but evidently they are not

very representative of the actual processes which generate lead time

demands.

It is important to note that these results are based on a particular

set of bases and observation and holdout periods. We would not expect

these percentages and dollar investments to be constant for every base

and every set of observation and holdout periods. Indeed, the percen-

tages and dollar investments are random variables. flowever, due to the

large samples and variety of supply accounts studied here, we would

expect these general results to be duplicated for other base accounts

and data periods.

A Consideration for Implementation

Due to the large size of a typical Air Force base supply account,

any candidate probability model should be one that is relatively easy

to implement. On the surface, the form of the qeametric-Poisson

distribution shown in Table 1 looks very cemplicated aid suqlests larqe

aowunts of machine time to ccrpute the individual puobxailities. To thie
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contrary, for typical values of the mean and VMR of lead time demand

shown here, the conputer time is not too excessive. However, in order

to reduce the computer time to an absolute minimum, a look-up table can

be constructed to give the reorder point directly. Table 12 shows such

a table. Each entry in the table is formed from the cumulative

geometric-Poisson distribution for a particular mean and VMR of lead

time demand. For example, an item with a mean and VMR of 1.3 and 2.2,

respectively, would have a reorder point (at .84 probability) of 2.0

units. This particular table covers about 90% of the items, in

practice a bigger table would be required.

Table 12. Reorder Points for Geometric-Poisson Probability

Model (at 84% Confidence Level)

Constant lead time

5.0 0 0 0 1 1 2 3 3 3 4 4 5 5 5 6 6
0 0 0 1 2 2 3 3 3 4 4 5 5 5 6 6
0 0 0 1 2 2 3 3 3 4 4 5 5 5 6 6
0 0 0 1 2 2 3 3 3 4 4 5 5 5 6 6
0 0 0 1 2 2 3 3 3 4 4 5 5 5 6 6

4.0 0 0 0 1 2 2 3 3 3 4 4 4 5 5 5 6
~0 0 0 1 2 2 3 3 3 4 4 4 5 5 5 6

0 0 0 1 2 2 3 3 3 4 4 4 5 5 5 6
0 0 1 1 2 2 3 3 3 4 4 4 5 5 5 6
0 0 1 1 2 2 3 3 3 4 4 4 5 5 5 6

! 3.0. 0 0 1 1 2 2 2 33 4 4 4 5 5 5 5

0001223334454556

• 0 0 1 1 2 2 2 3 3 4 4 4 4 5 5 5
0 0 1 1 2 2 2 3 3 3 4 4 4 5 5 5

4.0 0 0 1 1 2 2 2 3 3 3 4 4 4 5 5 5
o 2.0 0 0 1 1 2 2 2 3 3 3 4 4 4 5 5 5

04 3.0- 0 01 12 22 333 4 455

0 0 1 1 2 2 2 3 3 3 3 4 4 4 5 5
0 0 1 1 2 2 2 3 3 3 3 4 4 4 5 5
0 0 1 1 2 2 2 2 3 3 3 4 4 4 4 5
0 0 1 1 1 2 2 2 3 3 3 3 4 4 4 5

1.0 0 0 1 1 1 2 2 2 3 3 3 3 4 4 4 4
1 . .5 .9 1.3 1.7 2.1 2.5 2.9

Mean lead time demand

34



It is interesting to note how stable the reorder point is to

changes in the mean and VMR of lead time demand. For instance, for a

mean lead time demand of 1.7, a reorder point of 3.0 applies for any

VMR between 1.0 and 5.0. This same reorder point is seen to apply to

other means and VMRs also.

Another interesting item to note in the table is how the reorder

point, for a particular low value of the mean, say 0.5, decreases for

large values of the VMR. Intuition would suggest that the reorder point

should always increase for a large VMR, like for a mean of 2.9 in the

table. We refer to the cause of this action as "oriqin blocking."

Figure 11 shows graphically the phenomenon. As the VMR increases, for

a particular value of the mean, the variance of the distribution also

increases and we would expect the distribution to flatten out on either

side of the mean. As can be seen in the figure, the distribution does

spread out to the right of the man, but on the left side it is
restricted from taking on negative values and so the probabilities
actually increase or bunch up near the origin. This blocking action

affects the reorder point oomputation in the following way.

Suppose we desire a reorder point, at the 0.75 level, on an item t
with a mean lead time demand of 0.5. From Figure 11 we see that if

the item's VMR is 1.0, then its reorder point would be one unit. If

its VMR is 4.0, hiowever, then its reorder point would be zero. We

suspect that this so-called blocking action is also characteristic of

other discrete distributions, such as the negative binomial.

Operational Test of Constant-Poisson Model

The analyses presented so far have been directed at modeling the

customer arrival and demand processes in an exact sense. Given the

nature of the units per demand data as illustrated in Figure 1 and

Table 9, that is, constant demand on many items and a small variance

on others, it is natural to consider an approximation to the demand

process. In general, we are interested in how robust the reorder point

calculation is to differences in the form of the units per d(mand
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process. Our specific interest is in the question--what is the lead

tine supply effectiveness and spares investment for an approximate

model such as the constant-Poisson (Model II) as caqpared to the

geometric-Poisson model? Here the constant quantity is taken to

correspond to the mean units demanded per customer. Clearly this

model is an approximation to the demand process, but it may be adequate

for prediction purposes. This is one approximation to a ccupound-

Poisson process, like the geametric-Poisson, that is sometimes used in

practice [11]. (Another approximation that is quoted as being useful

is the simple Poisson process (111. For our data where many items have

a denand other than one, the constant-Poisson model is a better candidate.)

Table 13 gives a look-up table that can be used to determine an

item's reorder point based upon this model (reorder points are ccmputed

from the cumulative distribution function for the constant-Poisson model).

Table 13. Constant-Poisson Model Reorder Points

(at 84% Confidence Level)

Constant lead tine

4.0 •0 4 4 8 8 8 12 12 12 15 15 15 20 20 20 24
0 4 4 8 8 8 11 11 11 14 14 14 19 19 19 23

3.5 -0 4 4 7 7 7 ii11 11 13 13 13 18 18 18 21
o 0 3 3 7 7 7 1 0 10 10 12 12 12 16 16 16 20

3.0 0 3 3 6 6 6 9 9 9 11 11 11 15 15 15 18

0 33666 814 14144 17
2.5 0 3 3 5 5 5 8 8 8 9 9 9 13 13 13 15

0 2 2 5 5 5 7 7 7 8 8 8 11 11 11 14
2.0 0 2 2 4 4 4 6 6 6 7 7 7 10 10 10 12

0 2 2 4 4 4 5 5 5 6 6 6 9 9 9 11
1.5 0 2 2 3 3 3 5 5 5 6 6 6 8 8 8 9

0 1 1 3 3 3 4 4 4 5 5 5 6 6 6 8
1.0 0 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6

.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Expected number of custamner arrivals during lead ti-me

The two parameters necessary to enter the table are the expected number

of custarer arrivals during lead time and the expected units demanded

per custcmer. For example, an item with expected values of 2.0 and 1.5
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for the number of custaer arrivals and units demanded per custcmer,

respectively, would have a reorder point of 5.0 units (at an 84%

confidence level). Parameter values are estimated using historical

information from a data collection period. A

For each item in an account, we can use the look-up table to set a

reorder point for a fictitious lead time period of, say, 21 days. We

can then compare the observed demands to the hypothetical reorder point

and determine how effective it would have been in satisfying lead time

demand. This operational test is exactly as was described for the

geometric-Poisson model. Table 14 shows the lead tine supply effec-

tiveness and spares investment for each account. (As before, the

Bentwaters accounts are stocked at 95% and the CONUS accounts at 84%.)

Table 14. Summary Statistics for the Constant-Poisson
Reorder Points (UC > $5.00)

Base FSG % Sufficient $ Investment
Bentwaters 16 93.5 42,671.48

59 94.8 117,799.87

Summary 94.5 160,471.35

Dover 15 81.3 37,161.53
59 85.2 28,690.77
66 88.0 14,684.13

Minot 29 82.2 4,466.03
31 94.0 475.24

Randolph 53 86.4 4,107.07

Summary 84.6 89,584.77

The number of itemE and the observation and holdout periods are the

same as were used in Table 11. An inspection of Tables 11 and 14 shows

how the constant-Poisson model compares to the geaetric-Poisson and
current system models. It is easy to see that the constant-Poisson

compares very favorably to the geametric-Poisson model. The former is

actually closer to the lead time supply effectiveness than the latter;
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the spares investments for both models are about the same. Comparing

the constant-Poisson to the current system we see a dramatic improve-

ment, both in terms of being closer to the target effectiveness and in

terms of much lower spares investnents (this same -improvement was noted

for the gecmetric-Poisson model). That the oonstant-Poisson model

fares so well here is not surprising given that about 70% of the items

studied have a constant demand (Table 9). One of the reasons for

considering this constant approximation to the units demanded per

customer is for possible application to the items with a unit cost of

$5.00 or less. We next investigate those items.

Even though the more expensive items (UC - $5.00) represent larger

inventory investments for lead time spares, the low cost items can

create problems for the supply manager as well. It Ls important,

therefore, to analyze their demand patterns in sonu ctail withi the

objective of finding a model that is consistent withi the model for the

larger cost items.

As illustrated in Figure 5 for same typical items with a UC _ $5.00,

empirical data on units demanded per customer suggest that our chances

of fitting a standard distribution, such as the geometric, to them is

about nil. The items in Figure 5 do appear to have some constancy,

though, and it is this observation that leads us to consider the

constant approximation for units demanded per customer. Item one in

the figure has a majority of customer demands of 63, item two a

majority of 4, item three's demands are all for 3, and item 4 is a

mixture of mostly 5s and 15s. For all UC _< $5.00 items and the same

observation periods described before, 56.4% of 4933 items with at least

one customer arrival have a strictly constant demand, like item three

in the figure. Coupled with the results in Table 8 showing the

applicability of the Poisson distribution in describing the number of

customer arrivals per unit time, we take the constant-Poisson model as

an approximation to the total demand process.

In Table 15 we show how the constant-Poisson and current system

compare for items with a UC -< $5.00 (reorder points for the constant-
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Table 15. Sumnary Statistics for the Constant-Poisson (C-P)
and Current System Reorder Points (UC S $5.00)

Number Percent Sufficient $ Investment
Base FSG of Items C-P Current C-P Current

Bentwaters 16 89 92.1 89.9 5,034.23 4,994.79
59 1401 93.4 93.4 15,951.70 16,695.32

Sumnary 1490 93.3 93.2 20,985.93 21,690.11

Dover 15 46 63.0 71.7 515.37 602.92
59 875 80.7 84.5 4,442.32 6,107.03
66 75 84.0 86.7 188.58 305.60

Minot 29 122 74.6 80.3 1,139.97 1,606.43
31 117 88.9 88.9 348.46 594.24

Randolph 53 2210 79.4 82.1 18,940.19 22,910.12

Sumary 3445 79.8 82.8 25,574.87 32,126.34

Poisson are from tables like 13). For the Bentwaters accounts both

models look equivalent. The constant-Poisson has a lower cost for the

CONUS accounts but its percent sufficient statistic is a little less

than the current system's. Given that the percent sufficient statistic

is farther from the target for the CONUS bases we cannot say that the

constant-Poisson model is an improvement over the present system; on

the other hand, given the results at Bentwaters and for the CONUS bases,

the constant-Poisson seems to be almost as good as the current system.

The approximation is not expected to be as good for these cheaper

items as was evident for the higher cost items. A comparison of

Figures 1 and 5 shows that the constant assumption for units demanded

per customer is more likely to be a better approximation for the higher

cost items than the cheaper group. As discussed before, we view the

constant-Poisson mainly as a heuristic development for these lk, cost

items. Even if a target effectiveness of .90 was required to obtain

.84 in practice, the spares investment would probably not. be that much

more expensive than the investment shown in Table 15.
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To this point we have shown how the gecietric-Poisson and constant-

Poisson models fit actual data for items that cost over $5.00. For

fictitious lead time periods, both models give about the same results

and both represent significant improvements over the current system.

The geametric-Poisson is a more exact model than the constant-Poisson

model which is clearly an approximation. Although the former model is

more aesthetically pleasing, the latter model provides cxlparable

predictions.

Based on a ccuparison of the constant-Poisson and the current system

for items with a UC < $5.00, it seems reasonable to consider the

constant-Poisson model for all items, regardless of unit cost. It

would provide savings in spares investment for the higher cost items

and would not be any more costly than the present system for the

cheaper items.

Indeed, for the data used here, we can use Tables 11, 14 and 15 to

show that the total dollar investment, regardless of unit cost, is

$423,422.71 for the current system and $296,612.92 for the constant-

Poisson model. The constant-Poisson model's cost is 70.1% of the

current system's. The lead time reorder point supply sufficiencies

are 94.4% (current), 93.8% (constant-Poisson) for Bentwaters; for the

CONUS accounts the percentages are 85.0 (current) and 81.3 (constant-

Poisson). We doubt that the slightly higher percentages for the

current system would account for the higher investments for that system.

Although not performed in this study, an alternate procedure would

examine the differences in lead time supply performance for the same

dollar investments in reorder point spares. Based on the results here,

we would expect the constant-Poisson model to provide the higher supply

performance.

Next we examine the effect of variable lead time on both models.
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SECTION 5

THE EFFECT OF VARIABLE LEAD TIME

In this section we allow lead time to be a random variable in order

to determine what impact its variability has on the reorder point

ocxrmutation. We view this effort as mostly exploratory in nature at

this point. The current study being conducted at the AFUIC on the

mechanics of the lead time process will undoubtedly shed new light on

the lead time data we study and possibly will answer scne of the

questions posed earlier about them. Although our analysis is cursory,

we do demonstrate a methodology to study the effect of variable lead

time. To illustrate the technique, we examine priority group three

(routine) shipments only and consider just those items with a unit

cost over $5.00. In keeping with our concern to study the exactness

of all random processes, we concentrate on the geometric-Poisson model.

The analysis we show will be numerical in the sense described

relative to Model III in Section 2. That is, we use the empirical

distribution of lead time, g(Z), to determine the marginal distribution

of lead time demand, f (d), in equation (4). From f (d) the cumulative

distribution of lead time demand is formed and then a reorder point is

determined. Before showing how this process campares with the results

for a fixed lead time nxel, we first give some descriptive statistics

about the lead time process and about demands associated with a variable

lead time. V
Statistics on Lead Time

Figure 8 showed relative frequency diagrams of empirical lead times

for several base-resupplier conbinations. In Table 16 we show the mean

and variance-to-mean ratio of lead time for each base and its major

resupplier (the routing identifier codes are FGZ--Ogden ALC; S9E--Defense

Electronic Supply Agency; FPZ-San Antonio ALC; and S91--Defense

Industrial Supply Center). All resuppliers were taken for the Minot

accounts since no one resupplier seemed dominant. The unit of time is
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Table 16. Statistics on Lead Time

Base FSG n Resupplier Mean VMR

Bentwaters 16 263 FGZ 6.4 2.6
59 1051 S9E 6.6 1.4

Dover 15 2206 FPZ 2.9 0.5
59 1597 S9E 2.8 0.5
66 211 FPZ 3.1 0.5

Minot 29 806 All 2.7 0.6
31 378 All 2.8 0.5

Randolph 53 457 S91 3.4 0.7

one week. The quantity n is the number of lead time cycles for the

respective account-resupplier ccnibinations. In coputing the

statistics, all observations for Bentwaters greater than 17.1 (120 days)

are deleted; for CONUS accounts the corresponding value is 7.7 (54 days).

This coincides with a standard policy currently in use by the Air Force

to compute statistics on the lead time process. The mean and VIPR are

much larger for the Bentwaters accounts than the CONUS ones.

Another variable of interest in this section is the VMR of total

demands associated with a variable lead time. This is the quantity

that the Air Force is currently assuming to be three for each item in

the safety stock computation. If there were ample lead time cycles

on each item, we could study the VMR of lead time demand directly.

Instead, we estimate the VMR by using equations (5) and (6) of

Section 2. Dividing equation (6) by (5) we can form the ratio and

obtain:

VMR(var) = VMR(fix) + VMR(L)E(U)E(N). (7)

In (7), VMR(var) is the VMR of demand for a variable lead time, \MR (fix)

is the VMR of demand associated with a fixed unit of time, say one week,

VMR(L) is the VMR of the lead time process, E(U) and E(N) are as

defined before. Algebraically, VMR(fix ) corresponds to the first term

in equation (6) (since V(L) equals zero in this case) divided by

equation (5). To compute (7) on each item, we estimte k %,11 , E(W)
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and E (N) fron sample data for an observation period, say of 26 weeks

(we use the periods in Figure 4). In addition, the VMR of lead time,

VMR(L)' is taken from Table 16. A plot of the different variance-to-

mean ratios, VMR (var)' for any one base account would look similar to

Figure b where we showed a relative frequency chart of VMR(fix ) for the

Dover 59 account. It would be evident that there is considerable

variability in the VMRs of demand associated with variable lead time,

as was indicated for VMR (fix)  Table 17 gives the median and 95th

percentile of VMR(var ) for the individual accounts. Comparing these

entries to those in Table 6, we see that the medians are appoximately

the same but the 95th percentiles in Table 17 suggest that the

empirical distributions here are much more skewed to the right.

Table 17. Variance-to-Mean Ratio of Total Demands
During a Variable Lead Time

95th
Base FSG Median Percentile

Bentwaters 16 2.0 10.0
59 1.5 9.0

Dover 15 1.3 5.5
59 1.4 8.5
66 1.4 8.0

Minot 29 1.6 9.5
31 2.1 10.0

Randolph 53 1.7 15.0

All Item 1.5 9.0

Without having access to the analysis that established the current

policy of a constant VMR of 3.0 for each item, we have to question the

validity of that policy, given the results here. It seems inappropriate

to use a constant of 3.0 for every item when 50% of the items have an

estimated VMR less than 1.5. Indeed, 78.0% of the items shown here

have a VMR less than 3.0! We hasten to add that the estimates referred

to in Table 17 are for items that cost over $5.00; although the VMR of

44



tilt, ltN ,t.o,I" <t ittIL would l, likx t |. I l l t'i w t lil, it I: Ilk )I t'

,i l ) I tl i aito t/ o , tUIly tlIilt, hiI t" X.; t i t oln ; ho.'-,li';t, o t IhI( ],l l'I

ii11tl1 i t iI l t l ive t l It . W it t it ':\ Itctllikli t ; ,il lit the t' ,i I-

abli I i tyl ot load t it andl~ tilt',:t', ltt We'lllttl lwt' t. illvtC,:;t i'!lit", the

o't Itoo'\tn l to lttvkxwdo IX~illl.

'1110 rea, l okmllt' 'll ill 111i:, ; <, ioil i,; %lV w tl 'iw () f>l o l it l( tx l,ltt pollit

k NI t t i i 11 i.' I -, :I i t ' t I tilt, \',lI ,1 )i lit%' 0 I I I ,l t t IIlk, '\ , I~, tI : ;

tlli.<;% a'., t , hl it I,liil\ Iy t< itt,'llt; t MI tli ilt' tl.!4 .k'COA)tllit- I ':;Itl~ 'Ij 1

I ' t ~i t )iol , Vk 'v ,t" ',! : 'lt., id ,I" l , thA " I t ,01 'I 110ili~t t-' 114,1t Itl io ll

otl I I I ltl o l t /l l wklt I,:; II 1: t'' )11 1; < i 1t.i 1" , y , t ql~t C1(

I o l t Iit' I% '' ' -,; t it ; (lI ' i i <t il f t o t o i li l Iit, I ,t ) I o t tt, I.I t i n (.4)

w t' i!'O ll :;O' G t) tO itt 0wl' iilt, tilt,' , lt~t p!t iattt' I tx ,! '10 1 11 t , . : i I ,' ,11

! I, Ii , N I It'N 1 i 11 :1 t k : ;t 1' , iv t lt , 1 i ,lit 111%' 0 1 ', ' , 1 1 I ilk I I 1k, -t. t I h

I t x)Iit 'I I [x ii , ' , i II av flot t oilllit It'dt ll',ld I ilw lt' ,i li tN W'tlld '-I k.1 , ; ' t I(itl

A\. IA I k'-k comlt\lt i.olk) i 11 1"~ tlt v,. . -k , \t k w, I \ t , l, ko'l I , I I t,'ll l i

tth , " t h i X ,' ,i il i Io'. Tith i Ill), ttll'c :; I, I i t I v'I t \'l iAl i lity' , ilt II ;lilt )III

l0P~lI*,.:;(1llt O;tl! ,h I %V4" ,1 '? lit, 'l;' , 1 ]t, ;t Ill lilt, o,' ll ' tt l !;t illI :4

I1: t 'I Itt'Lt I tl' l I ( t 'I i I I t. I- I I t (~l ' I l ,to wo :;howx ill IP i'ltilt o .'

l It l it O tI ti t 1 11, I tI I; t I t t I ) t t I t< t '114 1 1 1 1 1, i it III ,

;t I i 1;t i ' \I ll t.l 1( 11f i Iil It I t, Il t t I :i l 11 , \ " Xit t i :, k -l - I

It " t ,it t . .

11-! cl I::; i' do:; tt i t te l ltti'i (-Pk i !-1-;0 lI Ilki t' 1 11i 1 11 A t ,k )I thI I

t : I\Yt It I IIi tII I I , I t I Iilk,.; I lli.' t I itt' t ill lP <i l o I ' l. Ilh ti i:; I

tlitl it txIv' :;'; olll I mod', ill Modeh l Ill WO w t' t l\' 1 (,6 ( ) ,1:; ti ,I X lk't I --

)' I I l ,ililtl I I11:t ,l 11' ) 111li I"i'lillt I.' Ii , I I It It I ll ilit Ill 11 , l ; 1 It)II

t i l k Ill ,lilt I \lt11% o t lo 'lt t illit, (Itt ldl~ Wt' kNIII[Ilt tt (J1) vi: illt) ,t i. t itoll (.1).

W t I I t 'II t )Itll tI t ' k -t111111, It I\'tk I t I'. i I)kt iktl I t t , t' t I I I t t t I t I I i t' I I

xI I I to :;,it i:;Iv. II!. tit li<'t , l~ t tillk' (It11, l11d . Tl. 11 ,I I 1g A:;lt it'

i o :;ill t itil I 'A )I I't p ilitl ; T ]ll : I i ; t ,'Ill v ' illl i t' t< I t t i ;tI I ."

O f t Ih It ixt t I ,, I iliit rkIi t ' I 'I ,l it ' I .' v' 'l Ix l ilt i i I 11

lI l .l 1 111'11, 0 1~p: ; , N1' It i 'l <t : 11111" tlli <' l . I I lt ' Ilk I It i '



,,
A

E0

LOl

00

CD

Lo (N

,3U0.LrflJ3O JO kLn, lbOlJi

I

46



Table 18. Reorder Points for Gecrretric-Poisson Probability
Model (at 84% Confidence Level)

* Variable lead time
* Dover 59-S9E data

5.0 0 0 0 1 1 2 2 3 3 4 4 5 5 5 6 6
0 0 0 1. 1 2 3 3 3 4 4 5 5 5 6 6
0 0 0 1 1 2 3 3 3 4 4 5 5 5 6 6
0 0 0 1 1 2 3 3 3 4 4 5 5 5 6 6
0 0 0 1 2 2 3 3 3 4 4 5 5 5 6 6

4.0 0 0 0 1 2 2 3 3 3 4 4 5 5 5 6 6
0 0 0 1 2 2 3 3 3 4 4 4 5 5 6 6

4 0 0 0 1 2 2 3 3 3 4 4 4 5 5 5 6
0 0 0 1 2 2 3 3 3 4 4 4 5 5 5 6

~0 0 1 1 2 2 2 3 3 4 4 4 5 5 5 6
3.0 0 0 1 1 2 2 2 3 3 4 4 4 5 5 5 6. 0 0 1 1 2 2 2 3 3 4 4 4 5 5 5 6

0o 0 1 1 2 2 2 3 3 3 4 4 5 5 5 5

0 0 1 1 2 2 2 3 3 3 4 4 4 5 5 5
0 0 1 1 2 2 2 3 3 3 4 4 4 5 5 5

2.0 0 0 1 1 2 2 2 3 3 3 4 4 4 5 5 5
0 0 1 1 2 2 2 3 3 3 4 4 4 5 5 5
0 0 1 1 2 2 2 3 3 3 4 4 4 4 5 5
0 0 1 1 2 2 2 2 3 3 3 4 4 4 5 5
0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5

1.0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 4 5

.1 .5 .9 1.3 1.7 2.1 2.5 2.9

Mean lead time demand

mean-VMR combinations; however, these are primarily at the fringes of

the regions of onstant reorder points. For example, for a mean of

2.1 and for VMRs of 1.0 through 1.4, the reorder point in Table 18 is

3.0. In Table 12 for the same mean, the reorder point is 3.0 for VMRs

of 1.0 through 1. 8.

Another way to ocnipare the fixed and variable lead time models is

to use both for predictions in fictitious variable lead time cycles.

Usinq the same observation periods for both we estimate model parameters

for the two models and then make predictions (that is, we set hypothetical

reorder points) for simulated lead time periods. For Model I we take

reorder points from Table 12 where a fixed lead time is assumed. For
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Model III we take reorder points from Table 18 where a variable lead

time is assumed. The fixed lead time of Model I is assu~med to be ther

mean of the empirical lead time distribution used in Model III. We

then compare both reorder points with actual observations during a

simulated variable lead time. That is, for a particular item we

simulate a random drawing fran the lead time distribution, g (f),
show.n in Figure 12. This simulated value is taken to be the length of

the next lead time cycle. Observed demand is then determined for this

lead time cycle and compared to the two predictions. Continuing this

process for each item we can determine the cost and lead time supply

effectiveness of the tuo models for an entire account. Indeed, we can

compare the current Air Force methodology as well.

It should be clear as to why we compare the predictions to a

simulated variable lead time. Although Model I makes predictions as

if lead time was known and constant, its supply effectiveness, relative

to Model III, must be measured relative to a realistic nonconstant lead

time. After all, we only study the effectiveness of Model I in the

hopes that it does provide reorder points that are reasonable in an

actual environment of variable lead times. It would not be fair in

judging the impact of variable lead time, to compare Model I 's predic-

tions; to a constant lead time and Model III' s to a variable lead time.

Table 19 shows some statistics on the cost and effectiveness of

Model I, Model III and the current system for simulated lead time

cycles. The items involved are ones f ran the Dover 59 account as

resupplied f ran the S9E vendor (421 items). The costs are the dollar

investments in reorder point spares; the percent sufficient shows how

Table 19. An Example of the Effect of Variable Lead Time

Model III
Model I (G-P) Current

costs ()13,003.37 13,555.57 22,023.64

% Sufficient 89.3 89.5 91.2
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effective the reorder point was in satisfying all demands during the

simulated variable lead time~ period. For example, the reorder points

for Model I would have satisfied all demands on 89.3% of the 421 items
during the simulated variable lead time periods. There is practically

no difference in the costs or percentages between Models I and III.

This suggests that the impact of a variable lead time is virtually

nonexistant, at least for this data set. This result was not un-

anticipated, given the similarity of Tables 12 and 18. It should be

noted that either model does better than the current systan.--the

percentages are reasonably close but Model I, say, has a reorder point
spares investme~nt which is 59.0% of the current system's cost.

For the purpose of sensitivity analysis, we are interested in how~

the reorder points might differ if the garmma distribution is used to

approximate g (f) in the numerical computation of f (d). Although

Figure 12 showed the inappropriateness of the gamrma distribution as a

probability model of lead time for the Dover data, it is important to

determine if the reorder point computation is sensitive to the use of

this approximation. Table 20 shows the reorder points (at . 84) based

on the gamma approximation. There are a few differences ccmlpared to
Table 18 but whether or not they would appreciably alter the spares

investment and lead time supply effectiveness will not be investigated.
(An analysis like the one shown in Table 19 could be performed.) As

discussed before, we think these present lead time data have too many

probable anomnalies to support a omplete analysis at this time. Given

that a "smooth" representation of the lead time data would most likely

be required for iiiplementation, the gammna approximation would be a

reasonable one to consider in the future on better data. The fcew

differences in Tables 18 and 20 suggest the gamrma distribution would

be a viable alternative to the inconvenience associated with tabulating

each possible empirical distribution of lead tim data.

Based on the above results (Tables 12, 18 and 19), we suspect that

not all reorder point comnputations need to consider the effect of
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Table 20. Reorder Points for Gearetric-Poisson Probability
Model (at 84% Confidenc Level)

* Variable lead time
* Gamma approximation to Dover 59-S9E data

5.0 0 0 0 1 1 2 3 3 3 4 4 5 5 6 6 6
0 0 0 1 1 2 3 3 3 4 4 5 5 5 6 6
0 0 0 1 2 2 3 3 3 4 4 5 5 5 6 6
0 0 0 1 2 2 3 3 3 4 4 5 5 5 6 6
0 0 0 1 2 2 3 3 3 4 4 5 5 5 6 6

4.0 0 0 0 1 2 2 3 3 3 4 4 5 5 5 6 6
0 0 0 1 2 2 3 3 3 4 4 5 5 5 6 6

00 1 2 33 4 5 60 0 0 1 2 2 3 3 3 4 4 45 5 5 6 6
0 0 1 1 2 2 3 3 3 4 4 4 5 5 5 6

30 0 0 1 1 2 2 3 3 3 4 4 4 5 5 5 6
30 001 1 2 2 3 3 3 4 4 4 5 5 5 6

" 0 0 1 1 2 2 3 3 3 4 4 4 5 5 5 6
0 0 1 1 2 2 2 3 3 4 4 4 5 5 5 6
0 0 1 1 2 2 2 3 3 4 4 4 5 5 5 6
0 0 1 1 2 2 2 3 3 3 4 4 4 5 5 5

2.0 0 0 1 1 2 2 2 3 3 3 4 4 4 5 5 5
0 0 1 1 2 2 2 3 3 3 4 4 4 5 5 5
0 0 1 1 2 2 2 3 3 3 4 4 4 4 5 5
0 0 1 1 2 2 2 3 3 3 3 4 4 4 5 5

1.0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5

.1 .5 .9 1.3 1.7 2.1 2.5 2.9

Mean lead time demand

variable lead time. Indeed, we suspect for CONUS account-resupplier

combinations that have reasonably symmetric lead time distributions,

the effect of variable lead time can be ignored. Such a supposition

for overseas bases, as resupplied by CONUS depots, is not so obvious,

though. In fact, the larger VMR of lead time (Table 16) for the

Bentwaters accounts will more directly influence the VMR of demand

during a variable lead time, VMR (ar), in equation (7). All of the

other variables in equation (7) are approximately the same for the

Bentwaters and CONUS accounts (Tables 5 and 6), so we would expect the

larger VMR(L ) for Bentwaters to produce a larger VM (var)' and in turn

affect the reorder point computation. Table 21 shows a comparison of

the reorder point tables for the Bentwaters 16 amcoxmt. Both tables
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Table 21. A Ccmparison of Reorder Points for Fixed and Variable
Lead Time (Gecimetric-Poisson and Bentwaters 16-FGZ)

(fixed)
5.0 0 2 3 4 5 6 6 7 7 8 8 9 9 10 10 11

0 2 3 4 5 5 6 7 7 8 8 9 9 10 10 10
0 2 3 4 5 5 6 7 7 8 8 9 9 9 10 10
0 2 3 4 5 5 6 6 7 7 8 8 9 9 10 10
0 2 3 4 5 5 6 6 7 7 8 8 9 9 9 10

4.0 0 2 3 4 4 5 6 6 7 7 8 8 8 9 9 10
4 0 2 3 4 4 5 5 6 6 7 7 8 8 9 9 9
0 0 2 3 4 4 5 5 6 6 7 7 8 8 8 9 9

0 2 3 4 4 5 5 6 6 7 7 78 8 89 9
0 2 3 3 4 5 5 6 6 6 7 7 8 8 8 9

.j 3.0 0 2 3 3 4 4 5 5 6 6 7 7 7 8 8 9
0 2 3 3 4 4 5 5 6 6 6 7 7 8 8 8
0 2 2 3 4 4 5 5 5 6 6 7 7 7 8 8
0 2 2 3 4 4 4 5 5 6 6 6 7 7 8 8

> 0 2 2 3 3 4 4 5 5 5 6 6 7 7 7 8
2.0 0 2 2 3 3 4 4 5 5 5 6 6 6 7 7 7

0 12 33 344 55 5 66 6 7 7
0 1 2 2 3 3 4 4 4 5 5 6 6 6 6 7
0 1 2 2 3 3 3 4 4 5 5 5 6 6 6 7
0 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6

1.0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6
I I ' II tI

.1 .5 .9 1.3 1.7 2.1 2.5 2.9

Mean lead time demand
(variable)

5.0 0 2 3 4 5 6 7 7 8 8 9 10 10 11 11 12
0 2 3 4 5 6 6 7 8 8 9 9 10 11 11 12
0 2 3 4 5 6 6 7 8 8 9 9 10 10 11 11
0 2 3 4 5 6 6 7 7 8 9 9 10 10 11 11
0 2 3 4 5 5 6 7 7 8 8 9 10 10 11 11

4.0 0 2 3 4 5 5 6 7 7 8 8 9 9 10 10 11
0 2 3 4 5 5 6 6 7 8 8 9 9 10 10 11
0 2 3 4 4 5 6 6 7 7 8 9 9 10 10 11
0 2 344566 778 8 9 9 10 10. 02344556778 8 9 91010

3. 0 2 3 3 4 5 5 6 6 7 8 8 9 9 10 10
0 2 3 3 4 5 5 6 6 7 7 8 8 9 9 10
0 2 3 3 4 4 5 6 6 7 7 8 8 9 9 10

0 2 2 3 4 4 5 5 6 6 7 7 8 8 9 9
0 2 2 3 4 4 5 5 6 6 7 7 8 8 9 9

2 0 2 2 3 4 4 5 5 6 6 7 7 8 8 9 9
0 1 2 3 3 4 4 5 5 6 6 7 7 8 8 9
0 1 2 3 3 4 4 5 5 66 6 7 7 8 8
0 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

1.0 1 1 2 2 3 3 4 4 5 5 6 6 6 7 7 8

.1 .5 .9 1.3 1.7 2.1 2.5 2.9

Mean lead time demand
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are based upon a 0.95 probability (the convention for overseas bases).

The top table gives the reorder points for a fixed lead time cycle.

The lower table gives the reorder points for a variable lead time

distribution. Here the Bentwaters 16-FGZ empirical data were used.

Clearly, more of the reorder points differ among the two tables than

was evident in the Dover 59-S9E analysis. It is reasonable to expect,

then, that the influence of a variable lead time will be greater for A

the overseas bases than the CONUS bases.

The effect of variable lead time could also be studied for the

constant-Poisson distribution in the same way. We would take f(dj )

as the constant-Poisson and use g(Z) to form the marginal distribution

of demand during lead time, f(d), as in equation (4). No data will be

shown here; the results parallel those for the gecmetric-Poisson model.

That is, marginal influence for the CONUS accounts and substantially

more influence for the Bentwaters account.

An important advantage for the gamma approximation would result in

the constant-Poisson case. If we could assume that lead time had

approximately a gamma distribution, then N (L) in equation (3) would have

a negative bincmial distribution 181. In essence, the number of custcmer

arrivals during a variable lead time would be negative binomial and for

constant demands per customer, D(L) in equiation (3) would have a negative

binomial distribution defined on the integers 0, c, 2c,... These
probabilities could be computed analytically as opposed to numerically

or iteratively and thus machine time for implementation would be

considerably reduced.
In this section we have attempted to suggest the impact of variable

lead time on the reorder point computation. By necessity, due to same

probable anomalies in the lead time data, only cursory analyses were

shown. A methodology was presented that can be used in the future to

examine more carefully the effect of variable lead time. We suspect

that variable lead time will be inconsequential for CONUS bases but

will be significant for overseas bases.
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SECTION 6

REMMDATIONS FOR VALIDATION/IMPUENTATION

Now that several models have been presented and subjected to data,

we comment on same items that are important for further validation

testing and possible implementation.

By far the strongest comment we have is that a computer irrplenenta-

tion of any model must provide the capability for identifying anomalous

data. The lead tine data we investigated were certainly suspicious and

same of the data on customer arrivals and demands were also. Parameter

estimates for model inputs are often seriously affected by atypical

data; more importantly, though, is that predictions based on the model

may not be realistic.

The Federal Simulation (FMDSIM) model at the AFI4C provides the

capability for another check on the work reported here. Some coments

about the use of FEDSIM are appropriate at this point. First, the

stockage effectiveness (for example, 0.84 for CONUS bases) specified as

a target in the current system clearly relates to the lead time cycle

only. We suspect that this is not the common interpretation among

supply managers. In fact, we doubt that the FEDSIM model computes the

effectiveness during the lead time cycle. To substantiate the work

reported here, we recamend that the stockage effectiveness computation

described above be added to FEDSIM.

Second, careful thought should be given to the length of the base

period that would be used in FEDSIM to compare the current system and

the models presented in this report. We would certainly not recauend

an arbitrary choice. The models we presented are probabilistic models

with assumed constant parameters. As pointed out before, periods longer

than 9-12 months probably would tend to violate stationarity assumptions.

It seems reasonable that a prediction for a lead time of 3-7 weeks

should be possible with historical data limited to 9-12 months.

Third, the comparisons reported here for the current system versus

the probabilistic models did not use any weighted schemes, such as
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exponential smoothing, to forecast parameter values. Whether or not

weighted schemes should be used in FEDSIM comparison runs needs to be

addressed.

A summary omment about FEDSIM use is that standard experimental

design techniques should be considered in setting up cmparison runs.

It would be very easy to confound or mask any true differences without

an objective test plan.

The zero demand items were ignored in our analysis but clearly a

technique is needed to set reorder points on them. Given the result in

Table 12 where item with a very low forecasted mean lead time demand

have a reorder point of zero, we submit that zero demand items should

have a zero reorder point as well. If the reorder point for an item

with, say, two demands for a 26 week observation period is zero (its

mean lead time demand would be approximately 0.2 for a lead time of

three weeks), then surely an item with no demands should be zero also.

Further testing of this idea could be performed with the FEDSIM model.

Another result that could be investigated easily with the FEDSIM

model is the effect oF variable lead time. Just as was performed in

this report, a reorder point could be ccupared with observed demands

in a fictitious lead time period. In one case the fictitious lead time

period would be equal to the mean lead time and in another case, the

lead time would be a random drawing from the empirical lead time

distribution. If the reorder point sufficiency was approximately the

same in both cases, then the effect of variable lead time could be

considered neglible.

As a last remark, we recommend that a full base (all FSGs) be used

in comparison runs as described in this report. Coupled with the

broad bases and FSGs already studied here, the results for an entire

base would form an in-depth package for evaluation.
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APPENDIX A

FORMIUATION OF TOTAL VARIABLE OST

For a particular stock item the total variable cost (TVC) per year

can be expressed as

TVC = OC + HC + BC (A-i)

where: OC total annual order costs
HC total annual holding costs
BC =total annual backorder costs.

The order costs can be quite easily calculated as
D

OC = D A (A-2)
Q

where: D = mean annual demand rate
Q = order quantity
A = cost per order.

In this form the order costs are consistent with the typical approach to

determining the total costs in an inventory model [7]. The holding

costs are governed by the relationship

HC (R + 9'- DL) IC (A-3)
2

where: R = the reorder point
L = the mean lead time in years
I = holding cost rate
C = unit price.

This formulation of the holding costs assumes that the expected number

of backorders is negligible and calculates the expected on hand inventory

as the net inventory. It should be noted that this formulation is

consistent with the typical inventory model.

The third cost term, annual backorder costs, can be determined by

a variety of methods. DODI 4140.45 proposes a method based on the

quantity "Time Weighted Requisitions Short." This formulation appears

to have Air Force acceptance and will be used in this discussion; thus,

BC =(WRS) =XE j. (x-R) [F(x+Q;L) - F(x;L) ]dx (A-4)

with X ( IWRS) = the implied penalty cost of time weighted requisitions

short
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where: X = shortage cost parameter
E = iten essentiality
S = average units per requisition
X = randon variable for demands during constant lead time L

F(. ;L) = cumulative probability distribution of demand during
lead time L.

As pointed out in [151 for many practical applications, the expected

number of units short

I (x-R) [F(x+Q;L) - F(x;L) ]dx (A-5)
QR

can be approximated by

f 0R (x-R) f (x;L)dx (A-6)
QR

where f(x;L) is the probability distribution of demand during lead

time. Using this approximation the final term in the cost equation is

A(TWRS) = LE fR (x-R) f (x; L) dx. (A-7)
SQ R

We have now arrived at the total variable cost per year per item:

D 0E
TVC= A + (R + -DL)IC + Ef (x-R)f(x;L)dx. (A-8)Q2 SQ R

To determine the optimal operating doctrine in terms of order

quantity, Q, and the reorder point, R, we must calculate the expressionsI

D(TVC) _ (TVC) = (A-9)
3Q @R

Doing this, we obtain the simultaneous equations

IC = f f (x;L)dx (A-10)

+ X (x-R) f (x;L)dx]Q = IC (A-II)

In general, an easy and quick solution to these equations does not

exist. Hadley and Whitin [7] suggest an iterative procedure for solving

for R and Q. Even though this procedure is sound analytically, the

iterative technique would have to be accomplished on every distinct

item in the stock account.
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The framers of the policy contained in DODI 4140.45 obviously

recognized the computation and time involved in determining the optimal

Q and R via the exact formulation above. To achieve a balance between

near optimal solutions and computational effort the DODI authorizes the

use of an approximate model. In this model the optimal Q and R are

detennined by a two-step process. The first step assumes there are no

backorders and the related total variable cost per year is the sum of

the holding and ordering costs, thus,

IVC = - A + (R + - DL)IC. (A-12)
Q 2

Solving this equation for the optimal Q yields the standard Wilson EOQ

equation

[2DA (A-13)

Q= IC-(

The difference between this order quantity and the optimal obtained

from the exact formulation is an additional term to account for the

stochastic nature of demands by including the expected number of back-

orders (requisitions short). If the expected number of requisitions

short is small, then the Q obtained from the Wilson EOQ equation yields

a good approximation to the optimal.

The second step of the approximation process is used to determine

the reorder point, R. The variable cost is assumed to consist of a

holding cost and a shortage cost or

VC = IC fR (R-x)f(x;L)dx + \ J (x-R)f(x;L)dx (A-14)
0 S R

Solving this expression for the optimal R yields the equation

sic = f(x;L)dx (A-15)

At this point the analysis breaks down because the underlying

probability distribution, f(x;L), is unknown. The priority item in

this research is to determine the distribution. The DODI suggests

using an equation of the form

R = DL + tcT (A- 16)
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where: o = standard deviation of lead time~ demand
t = safety level parameter.

The Air Force is currently using a reorder point formula of this

form, with o being approximated by the square root of three times the

expected demand during lead time~ and t = 1 for CONUS. Additionally,

if the demand during lead time is normally distributed, the value for

t yields a .16 probability of a stockout.
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